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Part I: History, Philosophy and Motivation Short Biographies

Who was Thomas Bayes?

Figure: Major players in creation of Bayes’ rule

Sharon Bertsch McGrayne †

McGrayne Bios (5:41-9:55)
†

“The Theory That Would Not Die” How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and
Emerged Triumphant from Two Centuries of Controversy”
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Part I: History, Philosophy and Motivation Allegory

Motivation and History

The allegory of our statistical lives

Most of us are born Bayesians.

“It is remarkable that this science (probability), which origi-
nated in the consideration of games of chance, should have be-
come the most important object of human knowledge.”

∼ Pierre-Simon de Laplace (1749-1827)

McGrayne WWII (16:02-30:23)
McGrayne Air France Flight 447 (2:30-4:00)
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Motivation and History

But by adolescence...

Fisher’s work at Rothamstad advanced experimental design.
McGrayne Fisher (12:44-16:00)
McGrayne Obscurity (29:57-36:31)

Are these methods appropriate for observational studies?

Today’s message-“It’s never too late to have a happy childhood.”
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Part I: History, Philosophy and Motivation Arguments for Bayes

Motivation and History

Why go Bayesian?

Another powerful tool for your tool kit.

measurement error from misclassification
complex dependencies among observations
missing data

Frequentist probabilities don’t always make intuitive sense.

McGrayne Frequentist (9:56-12:44)
Example: Probability of an H-bomb accident.

Bayesian “credible intervals” can be correctly interpreted by intro stat
students.

P-values and confidence intervals are somewhat ill defined.

Example: A study finds that out of 22 subjects with lung cancer 7 are
female.
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Part I: History, Philosophy and Motivation Arguments for Bayes

Motivation and History

Example: 7 out of 22 subjects with lung cancer are female.

Gender Gender
0 0
0 0
0 0
1 0
0 0
1 0
1 0
1 0
0 1
0 0
1 1

Figure: One-tailed Binomial p-value.
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Part I: History, Philosophy and Motivation Arguments for Bayes

Motivation and History

Example: 7 out of 22 subjects with lung cancer are female.

Figure: P-values depend on the researcher’s intention.
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Bayes’ Theorem

General Bayes’ Theorem

Bayes’ Theorem

p(θ|x1, . . . , xn) =
p(θ)p(x1, . . . , xn|θ)∫
p(θ)p(x1, . . . , xn|θ)dθ

(1)

Prior distribution of θ.

Likelihood of the data.

Normalizing constant.

Posterior distribution of θ.
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Common Discrete Distributions

Bernoulli Distribution

A Bernoulli experiment consists of a single trial with two possible
outcomes (success/failure) with success probability π.

Bern(π)

p(x) = πx(1− π)1−x x = 0, 1

E (x) = π

Var(x) = π(1− π)

Example: Plot a Bern(0.3)

x<-c(0,1)

plot(x,dbinom(x,1,0.3),ylim=range(0,1),type="h",

ylab="Probability",xlab="Success/Failure",col="blue")
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Common Discrete Distributions

Bernoulli Distribution

Anderson (OUHSC) BSE 5763 Applied Bayesian Statistics March 23, 2021 13 / 33



Common Discrete Distributions

Binomial Distribution

A Bernoulli experiment repeated n times.

Outcome of interest is the number of success in those trials.

Bin(n, π)

p(x) =
(n
x

)
πx(1− π)n−x x = 0, 1, . . . , n

E (x) = nπ

Var(x) = nπ(1− π)

Example: Plot a Bin(25,.3)

x<-0:25

plot(x,dbinom(x,25,.3),ylim=range(0,.25),type="h",

ylab="Probability",xlab="Number of

Successes",col="blue")
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Common Discrete Distributions

Binomial Distribution
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Common Discrete Distributions Common Continuous Distributions

Uniform Distribution

Puts equal density on every subinterval of the same length between to
points [a, b].

Uniform(a, b)

p(x) = 1
b−a a ≤ x ≤ b

E (x) = b+a
2

Var(x) = (b−a)2

12

Example: Plot a Uniform(0,1)

x<-seq(0,1,length=1000)

plot(x,dunif(x,0,1),ylim=range(0,1),type="l",

ylab="Density",xlab="Possible Outcome

Values",col="blue")
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Common Discrete Distributions Common Continuous Distributions

Uniform Distribution
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Common Discrete Distributions Common Continuous Distributions

Normal Distribution

Symmetric, bell-shaped curve.

Outcome of interest could have any value in the real numbers.

N(µ, σ2)

p(x) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
−∞ < x <∞

E (x) = µ

Var(x) = σ2

Example: Plot a N(0,1)

x<-seq(-4,4,length=1000)

plot(x,dnorm(x,0,1),ylim=range(0,.25),type="l",

ylab="Density",xlab="Possible Outcome

Values",col="blue")
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Common Discrete Distributions Common Continuous Distributions

Beta Distribution

Often used to model probabilities or prevalences.
Often used as a prior for these quantities.

Outcome of interest lives on the interval [0, 1].

Beta(α, β)

p(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1 0 < x < 1

E (x) = α
α+β

Var(x) = αβ
(α+β)2(α+β+1)

Example: Plot a Beta(3,5)

x<-seq(0,1,length=1000)

plot(x,dbeta(x,3,5),ylim=range(0,3),type="l",

ylab="Density",xlab="Possible Outcome

Values",col="blue")
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Maximum Likelihood

Joint Probability Function

Suppose a sample is made up of independent observations X1, . . . ,Xn all
assumed to belong to the same identical pdf (or pmf) p(x |θ).

Then
X1, . . . ,Xn are said to be i.i.d. (independent and identically distributed).

Joint pdf (or pmf)

The joint pdf (or pmf) of an i.i.d. sample sample X = (X1, . . . ,Xn) is
given by

p(x1, . . . , xn|θ) =
∏

p(xi |θ)

Recall that a Bernoulli pmf is defined by p(x |θ) = θx(1− θ)1−x .

Then in a sample made up of n independent Bernoulli trials, the joint
distribution is given by

n∏
i=1

θxi (1− θ)1−xi = θ
∑

xi (1− θ)n−
∑

xi
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Maximum Likelihood

Likelihood Function

Likelihood Function

Let p(x1, . . . , xn|θ) denote the joint pdf or pmf of the sample
X = (X1, . . . ,Xn). Then, given x1, . . . , xn is observed, the function of θ
defined by

p(x1, . . . , xn|θ) =
∏

p(xi |θ)

is called the likelihood function

Plotting this function vs θ shows how plausible each θ value is.
The maximum of the likelihood function is seen as the most plausible
value of θ, given the data that was observed.
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Maximum Likelihood

Estimating a Single Proportion: Surgery Example

Data is collected from various hospitals in the UK that perform cardiac
surgery on babies between 1991 and 1995. The surgery center in Bristol
reports 41 deaths and 143 operations during this time. Using vague priors
for the proportion of deaths at this surgery center, estimated the posterior
prevalence of mortality. See the files

surgery.data.txt

surgery.bugs.txt

surgery.R

Anderson (OUHSC) BSE 5763 Applied Bayesian Statistics March 23, 2021 25 / 33


	Part I: History, Philosophy and Motivation
	Short Biographies
	Philosophy
	Allegory
	Arguments for Bayes

	Part II: Introduction to Probability
	Bayes' Theorem
	Common Discrete Distributions
	Common Continuous Distributions

	Maximum Likelihood
	Priors
	Likelihood
	An Application
	In Theory


