
Basics of Markov Chain Monte Carlo (MCMC)

Michael Anderson, PhD

Department of Biostatistics and Epidemiology
The University of Oklahoma Health Sciences Center

March 23, 2021

Anderson (OUHSC) BSE 5763 Applied Bayesian Statistics March 23, 2021 1 / 13



Outline

Outline

1 Markov Chain (Andrei Markov 1907)

2 Gibbs Sampling (Geman and Geman 1984)

3 Metropolis Algorithm (Nicholas Metropolis 1953)

4 Monte Carlo Estimation (Stanislaw Ulam 1946)

Anderson (OUHSC) BSE 5763 Applied Bayesian Statistics March 23, 2021 2 / 13



Markov Chain (Andrei Markov 1907)

Markov Chains

Suppose for a process we have a set of states θ(1), . . . , θ(B).

Suppose further that being in any state θ(i) the process could step to
any state θ(j) with transition probability pij

Markov Property

P(θ(n+1)|θ(n), θ(n−1), . . . , θ(1), θ(0)) = P(θ(n+1)|θ(n)).

The pij govern the behavior of the chain at all states.

Stationary Distribution

A distribution over the states of a Markov chain that persist forever once
it is reached.

Most Markov chains we will consider will converge to a single
stationary distribution as n→∞
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Gibbs Sampling (Geman and Geman 1984)

Gibbs Sampling

Suppose we want to describe p(θ1, θ2|x1, . . . , xn). Suppose further that we
know p(θ1|θ2, x1, . . . , xn) and p(θ2|θ1, x1, . . . , xn).

Iteratively drawing a sample from the full conditionals of θ1 and θ2
eventually yield a sample from p(θ1, θ2|x1, . . . , xn).

Gibbs sampling is a simple example of constructing a Markov chain.

The transition probabilities here are conditional distributions.

How it works:

1 Choose an initial value for θ2 say θ
(0)
2 .

2 Obtain θ
(1)
1 from p(θ1|θ(0)2 , x1, . . . , xn).

3 Obtain θ
(1)
2 from p(θ2|θ(1)1 , x1, . . . , xn).

4 Repeat steps 2 and 3 with the new θs a large number of times.
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Gibbs Sampling (Geman and Geman 1984)

Gibbs Sampling

This produces a Markov Chain that “explores” the parameter space.
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Gibbs Sampling (Geman and Geman 1984)

Build Your Own Gibbs Sampler

F-35 Speed vs Accuracy

The radial accuarcy (distance from center of target in any direction) and
speed of the F-35 fighter jet is believed to have a bivariate normal
distribution.

Let X =MPH and Y =Radial Accuracy

(
X
Y

)
∼ N

[(
921

5

)
,

(
1002 152

152 32

)]
It’s easy to sample from this bivariate normal but lets pretend like we
can’t. From Graybill (1976) we know the full conditionals are given by

X |Y = y ∼ N(921 + 152
1

32
(Y − 5), 1002 − 152

1

32
152)

Y |X = x ∼ N(5 + 152
1

1002
(X − 921), 32 − 152

1

1002
152)
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Gibbs Sampling (Geman and Geman 1984)

Build Your Own Gibbs Sampler

See the “F35 bivariate normal.R” file
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Metropolis Algorithm (Nicholas Metropolis 1953)

Metropolis Algorithm

For the Gibbs sampler we need p(θ1|θ2, x1, . . . , xn)...but often we only
have g(θ1|θ2, x1, . . . , xn) ∝ p(θ1|θ2, x1, . . . , xn)

How it works:

1 Pick an arbitrary point for the random walk.

2 Generate a candidate from a symmetric proposal distribution.

3 Compute r = g(candidate)
g(current) .

4

Let new value =

{
candidate with probability min(r,1)
current, otherwise

5 Repeat steps 2-4 a large number of times.

Point: Likelihood and Prior are all we need!
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Metropolis Algorithm (Nicholas Metropolis 1953)

Metropolis Algorithm Example

Earlier, we derived the posterior distribution of the proportion of females
with lung cancer from a sample of 24 cancer subjects, 7 of which were
female. In that example we used our previous knowledge of pdfs to make
the integral in the denominator go to 1. Suppose we want to simply
specify the prior and likelihood and employ the Metropolis Algorithm to
take care of the rest.
Recall

Prior: p(θ) = Beta(15, 15)

Likelihood: p(x1, . . . , xn|θ) = θ7(1− θ)24−7

Posterior:p(θ|x1, . . . , xn) = Beta(15 + 7, 24− 7 + 15)

See the “Metropolis Algorithm Beta 2021.R” file
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Metropolis Algorithm (Nicholas Metropolis 1953)

Metropolis Algorithm Example
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Monte Carlo Estimation (Stanislaw Ulam 1946)

Markov Chain Monte Carlo

In a Bayesian analysis, all inference is on p(θ|x1, . . . , xn)

The vector θ might have many parameters θ = (θ1, . . . , θk)

Suppose we want E (θi ) =
∫
θip(θi |x1, . . . , xn)dθ(−i)

Note: θ(−i) is the vector θ excluding θi .

Now suppose we can draw a random sample from p(θ|x1, . . . , xn)

sample 1 (θ
(1)
1 , . . . , θ

(1)
k )

sample 2 (θ
(2)
1 , . . . , θ

(2)
k )

. .

. .

. .
sample B (θ

(B)
1 , . . . , θ

(B)
k )

Note: θ
(1)
1 , . . . , θ

(B)
1 is a sample from p(θ1|x1, . . . , xn)
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Monte Carlo Estimation (Stanislaw Ulam 1946)

Monte Carlo Markov Chain

Monte Carlo estimation says that

E (θ1) ≈ 1
B

∑B
j=1 θ

(j)
1

E (θ2) ≈ 1
B

∑B
j=1 θ

(j)
2

E (g(θ1)) ≈ 1
B

∑B
j=1 g(θ

(j)
1 )
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